
MA 3046 - Matrix Analysis Problem Set 6

1. a. Approximately how many floating point operations (flops) will be required to solve
a 25, 000× 25, 000 linear system by Gaussian elimination?

solution:

A is 25, 000, 000 (n = 25000). Gaussian elimination “costs” about (2/3)n3

flops:

cost
.
=
2

3
(25000)3

.
= 10.4× 1012 flops

.
= 10 teraflops

b. Assuming one used a computer capable of executing a sustained 80 million floating
point operations per second (80Mflops), approximately how long would it take to solve
this system?

solution:

Computer executes about 80 Mflops = 80× 106 flops/sec.

Time Required:

10.4× 1012flops
80× 106flops/sec

.
= 130, 000 sec

.
= 1

1

2
days

c. What would be the minimum available RAM required on this system in order not
to have to page out to swap during execution of this solution?

solution:

A is n× n, has n2 elements:

(25000)2 = 625× 106 elements

Double precision (i.e. MATLAB precision) requires 8 bytes per element:

8 ∗ (625× 106 elements) = 5× 109 elements .= 5 GB
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2. A particular PC, using Gaussian elimination, solves a system of 1, 000 equations in 1, 000
unknowns in about two seconds, with no apparent signs of excessive paging or swapping.
Approximately how long would it this same PC to solve a 3, 000×3, 000 system, assuming
neither paging nor swapping problems arise?

solution:

For A ∈ Cum×m, Gaussian elimination “costs” about (2/3)m3 flops. Therefore,
when neither paging nor swap are concerns, the execution time should be pro-
portional to m3. Hence, in this case, solving a 3, 000 × 3, 000 system should
cost: µ

3000

1000

¶3
= 27

times as long as solving a 1, 000× 1, 000 system, for this PC,

9 (2 sec) = 54 sec
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3. Consider the following system:

2.25 x1 − 3.31 x2 + 1.28 x3 = 3.43
7.88 x1 − 11.5 x2 + 7.15 x3 = 6.35
4.23 x1 + 3.70 x2 + 2.85 x3 = 6.39

a. Simulate the solution of this system by Gaussian elimination without partial piv-
oting in a three-digit, decimal machine with rounding of all intermediate results.

solution:

Augmented Matrix:  2.25 −3.31 1.28 3.43
7.88 −11.5 7.15 6.35
4.23 3.70 2.85 6.39



R2 − (3.50)R1
R3 − (1.88)R1

 2.25 −3.31 1.28 3.43
0 0.100 2.67 −5.65
0 9.22 0.440 −0.0600



R3 − (99.2)R2

 2.25 −3.31 1.28 3.43
0 0.100 2.67 −5.65
0 0 −265. 560.


So:

x3 =
560.

−265. = −2.11

x2 =
−5.65− 2.67x3

.100
=
−5.65−

−5.633...z }| {
(2.67)(−2.11)
.100

=
−5.65 + 5.63

.100
=
−.02
.100

= −.200

x1 =
3.43 + 3.31x2 − 1.28x3

2.25
=
3.43 +

−.662z }| {
(3.31)(−.200)−

−2.70...z }| {
(1.28)(−2.11)

2.25

=
3.43− 0.66 + 2.70

2.25
=
5.47

2.25
= 2.43
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b. Repeat the solution of part a., but this time simulate Gaussian elimination with
partial pivoting in the same machine.

solution:

Original Augmented Matrix is: 2.25 −3.31 1.28 3.43
7.88 −11.5 7.15 6.35
4.23 3.70 2.85 6.39


Interchange to get largest element on the diagonal in the first column:

R1 ↔ R2
R1 ↔ R2

 7.88 −11.5 7.15 6.35
2.25 −3.31 1.28 3.43
4.23 3.70 2.85 6.39


Eliminate in the first column:

R2 − (.286)R1
R3 − (.537)R1

 7.88 −11.5 7.15 6.35
0 −0.0200 −0.760 1.61
0 9.88 −0.990 2.98


Interchange to get largest element on the diagonal in the second column:

R2 ↔ R3
R2 ↔ R3

 7.88 −11.5 7.15 6.35
0 9.88 −0.990 2.98
0 −0.0200 −0.760 1.61


Eliminate in the second column:

R3 − (.00202)R2

 7.88 −11.5 7.15 6.35
0 9.88 −0.990 2.98
0 0 −0.762 1.62


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solution:

b. (cont) So:

x3 =
1.62

−0.762 = −2.13

x2 =
2.98 + .990x3

9.88
=
2.98 +

−2.1087z }| {
(.990)(−2.13)
9.88

=
2.98− 2.11
9.88

=
.87

9.88
= .0881

x1 =
6.35 + 11.5x2 − 7.15x3

7.88
=
6.35 +

1.0132z }| {
(11.5)(.0881)−

15.2295z }| {
(7.15)(−2.13)

7.88

=
6.35 + 1.01 + 15.2

7.88
=
22.6

7.88
= 2.87

c. Repeat the solution of part a., but this time simulate Gaussian elimination with
full pivoting in the same machine.

solution:

Original Augmented Matrix is: 2.25 −3.31 1.28 3.43
7.88 −11.5 7.15 6.35
4.23 3.70 2.85 6.39


Interchange to get largest element on the diagonal in the first column:

R1 ↔ R2
R1 ↔ R2

−11.5 7.88 7.15 6.35
−3.31 2.25 1.28 3.43
3.70 4.23 2.85 6.39


C1 ↔ C2
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solution:

c. (cont) (Note the solution vector, in terms of the original unknowns, will now
be:

x̂ = [ x2 , x1 , x3 ] )

Eliminate in the first column:

R2 − (.288)R1
R3 − (−.322)R1

−11.5 7.88 7.15 6.35
0 −0.0194 −0.779 1.60
0 6.77 5.15 8.43


Interchange to get largest element on the diagonal in the second column:

R2 ↔ R3
R2 ↔ R3

−11.5 7.88 7.15 6.35
0 6.77 5.15 8.43
0 −0.0194 −0.779 1.60


Eliminate in the second column:

R3 − (−.00287)R2

−11.5 7.88 7.15 6.35
0 6.77 5.15 8.43
0 0 −0.764 1.62


And so:

x̂3 =
1.62

−0.764 = −2.12

x̂2 =
8.43− 5.15x̂3

6.77
=
8.43−

−10.918z }| {
(5.15)(−2.12)
6.77

=
8.43 + 10.9

6.77
=
19.3

6.77
= 2.85

x̂1 =
6.35− 7.88x̂2 − 7.15x̂3

−11.5 =
6.35−

22.458z }| {
(7.88)(2.85)−

−15.158z }| {
(7.15)(−2.12)

−11.5

=
6.35− 22.5 + 15.2

−11.5 =
−.950
−11.5 = 0.0826
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solution:

c. (cont) (We would note that the numerator in the computation for x̂1 en-
countered some potentially fairly significant cancellation, and so we should not
be too surprised should that value have a relatively large(r) error.)

At this point then, we have the solution to the fully pivoted system as

x̂ =

 0.0826
2.85
−2.12


Recalling that the solution to the original system is related to this by:

x̂ = [ x2 , x1 , x3 ] ,

we finally have that the computed solution to the original system, using full
pivoting, is:

x =

 2.85
0.0826
−2.12



d. Compare your solutions from parts a., b. and c. above to the true (full MATLAB
precision) solution.

solution:

True (MATLAB) Without Pivoting Partial Pivoting Full Pivoting

 2.865178 . . .
0.089165 . . .
−2.126181 . . .

  2.43
−0.200
−2.11

  2.87
0.0881
−2.13

  2.85
0.0826
−2.12


Either of the three-digit solutions with pivoting are obviously far more accurate
than the solution without pivoting!
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e. Calculate the residuals for each of the solutions from parts a. and b. above. What
can you conclude about the accuracy of the solutions from the size of their respective
residuals?

solution:

For the solution without pivoting (using MATLAB)

r =

 3.436.35
6.39

−
 2.25 −3.31 1.28
7.88 −11.5 7.15
4.23 3.70 2.85

  2.43
−0.200
−2.11

 =
 0.0013
−0.0119
2.8646


This residual is not bad, except for the third component, which is awful. That
very strongly suggest we do not have a good solution. For the solution with
partial pivoting, the residual is

r =

 3.436.35
6.39

−
 2.25 −3.31 1.28
7.88 −11.5 7.15
4.23 3.70 2.85

  2.87
0.0881
−2.13

 =
−0.009489−0.022950
−0.005570


which is quite acceptable. Finally, the residual for the solution with full pivoting
is:

r =

 3.436.35
6.39

−
 2.25 −3.31 1.28
7.88 −11.5 7.15
4.23 3.70 2.85

  2.85
0.0826
−2.12

 =
 0.004506
−0.000100
0.070880


which is also quite acceptable! (Although, the value in the third coordinate is
a bit larger than machine precision.) Unfortunately, as we know, the fact that
the residuals for both pivoting strategies are relative small doesn’t necessarily
mean the solutions are any good.!)
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4. Consider the following system:

4.55 x1 + 2.39 x2 + 4.18 x3 = 7.52
2.40 x1 + 2.04 x2 + 3.75 x3 = 4.77
3.19 x1 − 2.06 x2 − 4.23 x3 = 1.45

a. Simulate the solution of this system by Gaussian elimination without partial piv-
oting in a three-digit, decimal machine with rounding of all intermediate results.

solution:

Augmented Matrix:  4.55 2.39 4.18 7.52
2.40 2.04 3.75 4.77
3.19 −2.06 −4.23 1.45


Eliminate first column:

R2 − (.527)R1
R3 − (.701)R1

 4.55 2.39 4.18 7.52
0 0.780 1.55 0.810
0 −3.74 −7.16 −3.82


Eliminate second column:

R3 + (4.79)R2

 4.55 2.39 4.18 7.52
0 0.780 1.55 0.810
0 0 0.260 0.0600


Back substitution:

x3 =
.0600

.260
= .231

x2 =
0.810− 1.55x3

.780
=
0.810−

0.35805z }| {
(1.55)(.231)

.780
=
0.810− 0.358

.780
=
.452

.780
= .579

x1 =
7.52− 2.39x2 − 4.18x3

4.55
=
7.52−

1.38381z }| {
(2.39)(.579)−

0.96558z }| {
(4.18)(.231)

4.55

=
7.52− 1.38− 0.966

4.55
=
5.17

4.55
= 1.14
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b. Repeat the solution of part a., but this time simulate Gaussian elimination with
partial pivoting in the same machine.

solution:

Augmented Matrix:  4.55 2.39 4.18 7.52
2.40 2.04 3.75 4.77
3.19 −2.06 −4.23 1.45


Largest element in first column is already on the diagonal, so eliminate first
column:

R2 − (.527)R1
R3 − (.701)R1

 4.55 2.39 4.18 7.52
0 0.780 1.55 0.810
0 −3.74 −7.16 −3.82


Interchange rows to get largest element on the diagonal in the second column:

R2 −→ R3
R2 −→ R3

 4.55 2.39 4.18 7.52
0 −3.74 −7.16 −3.82
0 0.780 1.55 0.810


Eliminate second column:

R3 + (.209)R2

 4.55 2.39 4.18 7.52
0 −3.74 −7.16 −3.82
0 0 0.0500 0.0120


Back substitution:

x3 =
.0120

.0500
= .240

x2 =
−3.82 + 7.16x3
−3.74 =

−3.82−
1.7184z }| {

(7.16)(.240)

−3.74
=
−3.82 + 1.72
−3.74 =

−2.10
−3.74 = .561

x1 =
7.52 + 2.39x2 − 4.18x3

4.55
=
7.52−

1.34079z }| {
(2.39)(.561)−

1.0032z }| {
(4.18)(.240)

4.55

=
7.52− 1.34− 1.00

4.55
=
5.18

4.55
= 1.14
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c. Compare your solutions from parts a. and b. above to the true (full MATLAB
precision) solution.

solution:

True (MATLAB) Without Pivoting With Pivoting 1.125590 . . .0.799300 . . .
0.116802 . . .

  1.140.579
0.231

  1.140.561
0.240


Neither solution is really that good! (More precisely, both agree fairly well in
the first component, but their second and third components don’t even have a
single digit correct!

d. Calculate the residuals for each of the solutions from parts a. and b. above. What
can you conclude about the accuracy of the solutions from the size of their respective
residuals?

solution:

For the solution without pivoting (using MATLAB)

r =

 7.524.77
1.45

−
 4.55 2.39 4.18
2.40 2.04 3.75
3.19 −2.06 −4.23

  1.140.579
0.231

 =
−0.01639−0.01341
−0.01673


This residual is not bad. For the solution with pivoting, the residual is

r =

 7.524.77
1.45

−
 4.55 2.39 4.18
2.40 2.04 3.75
3.19 −2.06 −4.23

  1.140.561
0.240

 =
−0.01099−0.01044
−0.01574


Which is also quite acceptable! Unfortunately, as we’ve already noted, small
residuals doesn’t necessarily mean the solution is any good! And, in this exam-
ple, that is precisely the case! )
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5. Calculate the true (MATLAB) solution for the system:

4.55 x1 + 2.39 x2 + 4.18 x3 = 7.56
2.40 x1 + 2.04 x2 + 3.75 x3 = 4.72
3.19 x1 − 2.06 x2 − 4.23 x3 = 1.50

(Notice the left-hand side here is identical to, and the right-hand side only a relatively small
perturbation of problem 4.) Compare the exact (MATLAB) solutions to both problems.
What does that comparison suggest about the condition of this matrix?

solution:

Using MATLAB, the calculated solution to this system is

x =

 1.023110 . . .
3.279168 . . .
−1.179991 . . .


while the solution to the system in problem 4 is: 1.125590 . . .0.799300 . . .

0.116802 . . .


Observe these solutions are drastically different, especially in the second and
third components, even thought the came from the same basic system with only
slightly changed right-hand sides. This is classically characteristic behavior for
so-called ill-conditioned systems.
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6. Consider the matrices:

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 and A =


3 −1 2 4
−4 2 −3 −3
2 −2 5 2
3 −3 1 −1


a. Show that P is a permutation matrix by showing that it can be created as a product

of elementary permutation matrices.

solution:

Multiplication on the left by P should produce:

R3 replaces R1 , R1 replaces R2 , R4 replaces R3 , and R2 replaces R4

We can accomplish this by performing, in sequence:
(1) Interchanging rows R1 and R3 (i.e. R1 ↔ R3)
(2) Interchanging rows R2 and R3 (the old R1) (i.e. R2 ↔ R3)
(3) Interchanging rows R3 (the old R2) and R4 (i.e. R3 ↔ R4)

This is equivalent to the product:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


| {z }

P(3)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


| {z }

P(2)


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


| {z }

P(1)

=


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ≡ P

Note the order of the terms in the product must be as shown in order to preroms
step (1) first.

b. Show that P(i)P(i) = I, where P(i) denotes any one of the elementary permutation
matrices you found in part a., and therefore that P(i)

−1
= P(i). Why should this be true

in general for elementary permutations? Why, however, should P−1 = P not be true for
more general permutations, e.g. why does PP 6= I here?
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solution:

Direct MATLAB calculation shows:

P(1)P(1) =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ≡ I
Similar computations verify the same is true for P(2) and P(3). This should
occur because all of these are elementary permutations, i.e. corresponding to
a single row interchange, e.g. R1 ↔ R3. Clearly, if we perform the same exact
interchange twice in succession on the same matrix, e.g. interchange the first
and third rows, then again interchange the first (old third) and third(old first)
rows, we will end up exactly where we started! In other words, we will have
the original matrix, which is precised the result of simply multiplying by the
identity.

However, for
P = P(3) P(2) P(1)

elementary matrix properties imply that

P−1 = P(1)
−1
P(2)

−1
P(3)

−1
= P(1) P(2) P(3)

which is not equal to P unless these permutations commute, which, of course,
matrix multiplications generally do not.

You might also note, that in general, elementary permutation matrices are
symmetric, i.e.

P(i)
T
= P(i) = P(i)

−1

and therefore, in this case (and actually in general)

P−1 = P(1)P(2)P(3) = P(1)
T
P(2)

T
P(3)

T
=
³
P(3)P(2)P(1)

´T
= PT
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c. Compute PA and AP and show that the results are as predicted by theory.

solution:

Theory predicts that multipying a matrixA on the left by a permutation matrix
will produce the corresponding permutation of the rows ofA, while multiplying
on the right by the same permutation will produce the corresponding permu-
tation of the columns of A. MATLAB shows:

PA =


2 −2 5 2
3 −1 2 4
3 −3 1 −1
−4 2 −3 −3


←− Original third row
←− Original first row
←− Original fourth row
←− Original second row

and

AP =


−1 4 3 2
2 −3 −4 −3
−2 2 2 5
−3 −1 3 1


↑ ↑ ↑ ↑
(2) (4) (1) (2) ←− Original column number
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7. Solve the following system by LU Decomposition with Partial Pivoting, and for-
ward/backward substitution:

3x1 − x2 + 2x3 = 1
6x1 − 2x2 + 5x3 = −1
−3x1 + 2x2 − x3 = −5

solution:

Original Matrices:

Uwork =

 3 −1 2
6 −2 5
−3 2 −1

 , Lwork =
 1 0 0
0 1 0
0 0 1

 , pwork =
 12
3


Interchange first and second rows to place largest element on diagonal, i.e.:

(i) R1 ↔ R2 to yeild:

Uwork =

 6 −2 5
3 −1 2
−3 2 −1

 , Lwork =
 1 0 0
0 1 0
0 0 1

 , pwork =
 21
3


(Note there are no subdiagonal elements in L yet.): Then eliminate in
first column, i.e.:

(i) R2 − 1
2R1

(ii) R3 − (−12 )R1
to yield

Uwork =

 6 −2 5

0 0 −12
0 1 3

2

 , Lwork =
 1 0 0

1
2 1 0

−12 0 1

 , pwork =
 21
3


Zero on diagonal in second column mandates row interchange. (Interchange
subdiagonal elements of L only!) Perform

(i) R2 ↔ R3 yielding:

Uwork =

 6 −2 5

0 1 3
2

0 0 −12

 , Lwork =
 1 0 0

−12 1 0
1
2 0 1

 , pwork =
 23
1


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solution:

Factorization complete - PA = LU , where

P =

 0 1 0
0 0 1
1 0 0

 , L =
 1 0 0

−12 1 0
1
2 0 1

 , U =

 6 −2 5

0 1 3
2

0 0 −12


Solve original system as:

Lz = Pb

Ux = z

Forward substitution:

z1 = −1
−12z1 + z2 = −5
1
2z1 + z3 = 1

implies
z1 = −1

z2 = −5 + 1
2
z1 = −5 + (1

2
)(−1) = −11

5

z3 = 1− 1
2
z1 = 1− (1

2
)(−1) = 3

2

Backward substitution:

6x1 − 2x2 + 5x3 = −1
x2 + 3

2x3 = −115
− 1

2x3 = 3
2

implies

x3 =
3/2

−1/2 = −3

x2 = −11
2
− 3
2
x3 = −11

2
−
µ
3

2

¶
(−3) = −2

2
= −1

x1 =
−1 + 2x2 − 5x3

6
=
−1 + (2)(−1)− (5)(−3)

6
=
12

6
= 2
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8. Solve the following system by LU Decomposition with Partial Pivoting, and for-
ward/backward substitution:

2x1 + x2 − 2x3 − 2x4 = 2
3x1 + x2 + 6x3 − 3x4 = −6
−2x1 + x2 + x3 + 2x4 = −1
−x1 + x2 − 8x3 + 3x4 = 10

solution:

Original Matrices:

Uwork =


2 1 −2 −2
3 1 6 −3
−2 1 1 2
−1 1 −8 3

 , Lwork =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , pwork =

1
2
3
4


Interchanging first and second rows to place largest element on diagonal, i.e:

(i) R1 ↔ R2

yields:

Uwork =


3 1 6 −3
2 1 −2 −2
−2 1 1 2
−1 1 −8 3

 , Lwork =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , pwork =

2
1
3
4


(Note there are no subdiagonal elements in Lwork yet!) Then eliminate in first
column, i.e.:

(i) R2 − ( 23 )R1
(ii) R3 − (−23 )R1
(iii) R4 − (−13 )R1

to yield:

Uwork =


3 1 6 −3
0 1

3 −6 0

0 5
3 5 0

0 4
3 −6 2

 , Lwork =


1 0 0 0
2
3 1 0 0

−23 0 1 0

−13 0 0 1

 , pwork =

2
1
3
4


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solution:

To place the largest element in the pivot in the second column, we must now
interchange

(i) R2 ↔ R3

in Uwork and pwork, and in the subdiagonal portion of Lwork:

Uwork =


3 1 6 −3
0 5

3 5 0

0 1
3 −6 0

0 4
3 −6 2

 , Lwork =


1 0 0 0

−23 1 0 0
2
3 0 1 0

−13 0 0 1

 , pwork =

2
3
1
4


Next eliminate in the second column with:

(i) R3 − ( 15 )R2
(ii) R4 − ( 45 )R2

yielding:

Uwork =


3 1 6 −3
0 5

3 5 0

0 0 −7 0

0 0 −10 2

 , Lwork =


1 0 0 0

−23 1 0 0
2
3

1
5 1 0

−13 4
5 0 1

 , pwork =

2
3
1
4


To place the largest element in the pivot in the third column, we must now
interchange

(i) R3 ↔ R4

in Uwork and pwork, and in the subdiagonal portion of Lwork:

Uwork =


3 1 6 −3
0 5

3 5 0

0 0 −10 2

0 0 −7 0

 , Lwork =


1 0 0 0

−23 1 0 0

−13 4
5 1 0

2
3

1
5 0 1

 , pwork =

2
3
4
1


Finally we elimiante in the third column: (i) R4 − ( 710 )R3
yielding:

Uwork =


3 1 6 −3
0 5

3 5 0

0 0 −10 2

0 0 0 −75

 , Lwork =


1 0 0 0

−23 1 0 0

−13 4
5 1 0

2
3

1
5

7
10 1

 ,
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solution:

and

pwork =


2
3
4
1

 =⇒ P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


We now solve

Ax = b using PA = LU

by forward and backward substitution as:

Lz = Pb

Ux = z

Forward substitution:

z1 = −6
−23z1 + z2 = −1
−13z1 + 4

5z2 + z3 = 10
2
3z1 + 1

5z2 + 7
10z3 + z4 = 2

yields

z1 = −6

z2 = −1 + 2
3
z1 = −1 + (2

3
)(−6) = −5

z3 = 10 +
1

3
z1 − 4

5
z2 = 10 + (

1

3
)(−6)− (4

5
)(−5) = 12

z4 = 2− 2
3
z1 − 1

5
z2 +

7

10
z3 = 2− (2

3
)(−6)− (1

5
)(−5) + ( 7

10
)(12) = −7

5

Backward substitution:

3x1 + x2 + 6x3 − 3x4 = −6
5
3x2 + 5x3 = −5

− 10x3 + 2x4 = 12

− 7
5x4 = −75

6 - 8 - 3
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solution:

yields:

x4 =
−7/5
−7/5 = 1

x3 =
12− 2x3
−10 =

12− (2)(1)
−10 = −1

x2 =
−5− 5x3
5/3

=
−5− (5)(−1)

5/3
= 0

x1 =
−6− x2 − 6x3 + 3x4

3
=
−6− (0)− (6)(−1) + (3)(1)

3
= 1

6 - 8 - 4
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9. a. Show that for any invertible matrices A and C in C
um×m,A

... B
. . . . .

0
... C


−1

=

A−1
... −A−1BC−1

. . . . . . . . . . . . . . . . . . .

0
... C−1


(Note that from this we can immediately conclude that the inverse of any upper triangular
matrix U is also upper triangular, provided all the diagonal elements of U are non-zero.)

solution:

Direct computation showsA
... B

. . . . .

0
... C


A−1

... −A−1BC−1
. . . . . . . . . . . . . . . . . . .

0
... C−1



=

AA−1
... −AA−1BC−1 +BC−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... CC−1

 =

=

 I
... −BC−1 +BC−1

. . . . . . . . . . . . . . . . . . . .

0
... I

 =
 I

... 0
. . . . .

0
... I


and we’re done.

b. Using the result from part a. above, show that, if U is invertible, then the
diagonal elements of U−1 are precisely the reciprocals of the diagonal elements of U.

solution:

Observe that the diagonal elements of U−1U are precisely the inner
products of the rows of U−1 with the columns of U. Therefore, since these
diagonal elements of the product are precisely the diagonal elements of the
identity,

1 =
mX
k=1

¡
U−1

¢
ik
uki
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solution:

But, because U is upper triangular, then uki = 0 , k > i, and be-
cause U−1 is also upper triangular as well, then also

¡
U−1

¢
ik
= 0 , k < i. But

this means

1 =
mX
k=1

¡
U−1

¢
ik
uki =

¡
U−1

¢
ii
uii

and therefore it follows immediately that

¡
U−1

¢
ii
=

1

uii

c. Based on your result from part b., show that the condition number of an upper
triangular matrix U satisfies

κ(U) ≥ maxi,j |uij |
maxi |uii|

This result, of course, explains why either a large growth factor (ρ) or the appearance of
unavoidable small pivots is a sure sign of trouble in Gaussian elimination.

solution:

Recall that, for any matrix A,

kA k = max
kx k=1

kAx k

Suppose now, that for some fixed values the largest element of A in magnitude
occurs in column J . Now let x̂ a vector of all zeros except for x̂J = 1. Then,
obviously

Ax̂ =


a1J
a2J
...

amJ

 =⇒ kA k ≥ max
i
|aiJ | ≡ max

i,j
|aij |

regardless of which norm we choose to use.
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solution:

But, based on this last observation and the result from part b., it follows
immediately that

kU k ≥ max
i,j

|uij |

and

kU−1 k ≥ max
i,j

¯̄̄¡
U−1

¢
ij

¯̄̄
≥ max

i

¯̄¡
U−1

¢
ii

¯̄
= max

i

¯̄̄̄
1

uii

¯̄̄̄
=

1

mini |uii|

But then, by definition

κ(U) = kU k · kU−1 k ≥ max
i,j

|uij | · 1

mini |uii| =
maxi,j |uij |
mini |uii|
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10. Consider the system of linear equations:

Ax = b

where

A =

∙
3.44 12.4
−0.345 −1.32

¸
=

∙
1.00 0
−.100 1.00

¸ ∙
3.44 12.4
0 −0.0800

¸
and

b =

∙
1.14
−0.620

¸
.

In a computer for which (normal) single precision is three decimal digits, with rounding of
all intermediate terms, a computed solution to this problem is

x̃(0) =

∙−22.5
6.33

¸
.

a. Perform a single iteration of iterative improvement on the above solution.

solution:

First, compute the residual (using the original matrix A and at least six digit
arithmetic):

r(0) = b−Ax̃(0) =
∙
1.14
−0.620

¸
−
∙
3.44 12.4
−0.345 −1.32

¸ ∙−22.5
6.33

¸
=

∙
0.0480000
−0.0269000

¸
=

∙
0.0480
−0.0269

¸
(Note that after the residual has been computed in extended precision, it’s
perfectly permissable to drop it back to single precision. Note also that:

k r(0) k∞
kb k∞

=
.048

1.14
.
= .042

which is about an order of magnitude larger than machine precision (eps = .005)
for this machine. So we might expect this solution isn’t all that good!) Next,
proceed to solve:

Ae(0) = LUe(0) = r(0)
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solution:

First forward solve:∙
1.00 0
−.100 1.00

¸
z(0) = r(0) =⇒ z

(0)
1 = 0.0480

−.100z(0)1 + z
(0)
2 = −0.0269

=⇒ z
(0)
1 = 0.0480

z
(0)
2 = −0.0269− (−.100)(.0480) = −0.0221

Then backward solve:∙
3.44 12.4
0 −0.0800

¸
e(0) = z(0) =⇒ 3.44e

(0)
1 +12.4e

(0)
2 = 0.0480

−0.0800e(0)2 = −0.0221

=⇒
e
(0)
2 = −0.0221

−0.0800 = .276

e
(0)
1 = .0480−(12.4)(.276)

3.44 = −.980
or

ẽ(0) =

∙−0.980
0.276

¸
Therefore:

x̃(1) = x̃(0) + ẽ(0) =

∙−22.5
6.33

¸
+

∙−0.980
0.276

¸
=

∙−23.5
6.61

¸

b. Based on your answer to part a, do you feel this matrix is ill-conditioned in a three
decimal digit machine. (Justify your answer.)

solution:

Note that
k ẽ(0) k∞
k x̃()) k∞

=
.980

22.5
.
= .044
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solution:

This suggests that the original computation error in x̃()) was about five percent.
That’s not too bad, but its also quite about an order of magnitude above ma-
chine precision. Also, note the rather small pivot element in the (2, 2) position
of U, relative to the corresponding number in the same position of A. There-
fore, this matrix is probably at least mildly ill-conditioned for this machine.
(But it’s also likely not so ill-conditioned that a couple of iterations of iterative
improvement would not be able to recover an accurate solution.)

We could actually check this by performing another iteration of iterative im-
provement. This would produce (skipping the details):

r(1) =

∙
0.0160
−0.00230

¸
z(1) =

∙
0.0160
−0.000700

¸
ẽ(1) =

∙ −0.0270
0.00875

¸
and finally

x̃(2) =

∙−23.5
6.62

¸
This solution agrees with the true (MATLAB) solution

x =

∙−23.5281 . . .
6.6191 . . .

¸
to (three-digit) machine precision.
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11. Find the Cholesky factorization of the symmetric, positive definite matrix

A =

 16 −4 −12
−4 82 −24
−12 −24 22



solution:

Cholesky factorization is a modification of Gaussian elimination, which ex-
ploits the fact that pivoting is not required with Hermitian, positive-definite
matrices. (Real, symmetric matrices are automatically Hermitian!) The elimi-
nation is based on the fact that the formulas 1/√a11

... wH

. . . . . . . . . . . . .

−w/a11
... I


 a11

... wH

. . . . . . . . .

w
... K

 =
√a11

... wH/a11
. . . . . . . . . . . . . . . .

0
... K− wwH

a11


and

A =

 a11
... wH

. . . . . . . . .

w
... K

 =
 √a11

... 0
. . . . . . . . . . . .

w/
√
a11

... I


√a11

... wH/
√
a11

. . . . . . . . . . . . . . . . .

0
... K− wwH

a11


are equivalent, and therefore, we only need to store (and compute) the ele-
ments on and above the diagonal. Repeating this leads to an upper triangular
matrix R, such that

A = RHR

To align this problem with the above notation, consider our original matrix
to be:

A =

 16
... −4 −12

. . . . . . . . . . . . . . . . . . .
−4
−12

...
82 −24
−24 22


and so

w =

∙ −4
−12

¸
and K =

∙
82 −24
−24 22

¸
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solution:

But now,

K− ww
H

a11
=

∙
82 −24
−24 22

¸
− 1
4

∙
16 48
48 144

¸
which implies that after eliminating the first column, we will be left with 4 −1 −3

0 81 −27
0 −27 13


If we now repeat the same thing on the lower right hand block here, i.e. use

K̂ =

∙
81 −27
−27 13

¸
=⇒ ŵ = [ −27 ] and

ˆ̂
K = [ 13 ]

then Cholesky elimination on this produces

ˆ̂
K− ŵ ŵ

H

a22
= [ 13 ]− [ −27 ][ −27 ]

81
= [ 4 ]

ando so eliminating on the reduced matrix K̂ will produce,∙
9 −3
0 4

¸
or, when updated in the full matrix, eliminating in the second column will
produce  4 −1 −3

0 9 −3
0 0 4


Finally, although we do not need to eliminate below the diagonal in the

last column, we do need to replace the diagonal element there by its square
root, i.e.  4 −1 −3

0 9 −3
0 0 2

 ≡ R
Direct computation will now confirm RRH = A.
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